ENAR CFB Paste: Copper Furnace Brazing Paste
BCuSn4

Unique Features:

A typically formulated paste with 99.9 % + purity fine mesh Copper Alloy Powder having a metal content of 85% weight mixed with special binders.

Advantages:

This Copper Brazing Alloy is usually used for furnace brazing of Mild Steel, 300 & 400 series of Stainless Steels and Carbon Steels and High Alloyed Steels.

Copper Brazing paste has a good fillet forming property which gives a better appearance at the joints. It is recommended to be used in cracked Natural Gas or Propane, H₂/N₂ atmosphere furnaces.

It is ideal for joints for elevated temperature services and for brazing Heat Exchangers and Joining Tubular components providing strong, leak-proof joints.

The brazing process has to be carried out in vacuum or controlled atmosphere.

Brazing Temp: 1060°C

This filler metal is very fluid and works best with joint clearances less than 0.02 to 0.15 MM.

Typical Chemistry of Deposit:

| Composition, typical analysis (% w/w): |
| Cu | Sn | Pb |
| 95.90 – 96.00 | 4.00 | <0.02 |

Unique Features:

- Extremely free and thin flowing for maximum capillarity.
- Self-fluxing properties.
- High degree of wetting & bonding.
- Strong, ductile & leak proof joints.
Advantages:

- Highly user friendly while dispensing.
- Precise, economical dosage even on small components.
- Pre-paste components can be stored for several hours prior to brazing operation.
- Clean binder with minimum smoke generation during furnace brazing.
- No post treatment or cleaning required after brazing

Application / Dispensing:

- Manually or automatically with pneumatic or mechanical dispensing units

Physical Properties:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Orange-Brown</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>8.92</td>
</tr>
<tr>
<td>Density</td>
<td>0.32 lb/in³</td>
</tr>
<tr>
<td>Electrical Conductivity</td>
<td>101% IACS</td>
</tr>
<tr>
<td>Electrical Resistivity</td>
<td>1.71 mcΩ</td>
</tr>
</tbody>
</table>